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Strategies for production of fuels from lignocellulosic biomass 
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 Pyrolysis pressure and temperature affect char reactivity 
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Impact of Pressure on Gasification 

• Carbon gasification rate slow step in conversion of biomass to 
syngas (CO + H2) 
C + H2O  CO + H2 
C + CO2  2 CO 
• Rate catalyzed by alkali metals 
• Langmuir-Hinshelwood type kinetics 
• CO and H2 inhibit gasification  

• Devolatilization impacts amount of carbon to be gasified and  
     gas composition, including tar and hydrocarbon formation 

 



4 

Alkali Catalyzed Carbon Gasification 

* + CO2 <-> *(CO2)  
*(CO2) <-> *(O) + CO 
* + H2O <-> *(O) + H2 

*(O) + C  * + C(O) 
C(O)  CO 
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Biomass Gasification Background 

• Biomass gasification is a combination of two series processes 
– pyrolysis (devolatilization) and char gasification. Char 
gasification activity is affected by the pyrolysis conditions 
(heating rate, temperature, and pressure), ash content and 
composition, and gasification conditions.  
 

• The challenge is to develop experimental protocols that would 
allow collecting experimental data at conditions that most 
likely mimic the heating rate, temperature, pressure, residence 
time, and transport effects likely to be encountered in a 
commercial gasifier. 

 



Goals/Objectives 

• Quantitative understanding of the gasification and pyrolysis along with an 
improved  understanding of the catalytic effect of inorganics present in biomass 
 

• Role of particle morphology in mass transport effects as well as the char reactivity 
 

• Identifying process conditions where synergistic effects of  biomass-coal blending 
are observed. This will include effect of particle size, residence time and proximity 
of the two feed types 
 

• Building mathematical models based on science and engineering principles that 
would predict the  biomass gasification rate at a given pressure, temperature and 
feed composition.  

 
• Quantify the effect of pressure and temperature on the formation of  tars and light 

hydrocarbons. 
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Methods 

• Experiments in two complementary reactors: 
• Pressurized entrained-flow reactor (PEFR) at Georgia Tech 
• Pressurized thermogravimetric apparatus (PTGA) at NREL 

• Differences in heating rate, reaction time 
• Mass/heat transfer limitations 

 
• Three biomass types:  

–  Loblolly pine  
–  Switch grass  
–  Corn stover 



PEFR Vs. PTGA 

REACTOR PEFR  PTGA 

Pressure Up to 80 bar Up to 100 bar 

Temperature Up to 1500 C Up to 1200 C 

Mode Co-current flow Semi-Batch 

Sample size ~1 g/min 10-100 mg 

Heating Rate ~10,000 C/s ~10 C/min 

Residence time Up to 10 s Up to hours 

Kinetic Control 

Limit 

>1000°C ~800°C 

Gas analysis FTIR, GC MS, FTIR 



Elemental Composition of Biomass Feed 

 

Element Loblolly 

Pine 

Switchgrass Cornstover 

C 52.4% 48.3% 43.7% 

H 6.3% 6.1% 5.9% 

N 0.07% 0.36% 0.59% 

O 40.9% 44.7% 45.3% 

Ash 0.3% 2.2% 6.1% 

Volatile Matter 79.1% 77.6% 74.4% 

Fixed Carbon 12.8% 12.4% 12.6% 



Elemental Analysis of Feed Biomass (ICP)  

 

Element Loblolly Pine Switchgrass Cornstover 

Ca 490 1790 1900 

Fe 38 20 437 

K 358 4980 8675 

Mg 203 1540 1325 



Approach 

• Investigate high temperature pyrolysis of  biomass - effect of 
pressure and temperature on char morphology and reactivity 
towards gasification 
 

• Gasification kinetics of chars generated from pyrolysis 
(individual chars, blend pyrolysis chars, and blending of chars 
generated individually) 
 

• Catalytic effect of inorganics (ash) on char gasification 
 

• Transport effects and mathematical models 



Pressurized Entrained Flow Reactor 
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Pressurized Thermobalance (PTGA) 
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Effect of Pressure and Heating Rate on Loss of Mass 

in PTGA Pyrolysis 
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Effect of Pressure on Residual Char  
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FTIR vs. Mass Spectrometer in PTGA 
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Effect of Pressure on Gas Species Evolution 
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Effect of Pressure on Gas Species Evolution 
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Effect of Pressure on Minor Gaseous Products 
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Morphology Studies 

Effect of Temperature at Constant pressure 

Char generated in LEFR  

1000 C 800 C 600 C 



Effect on Pressure at constant temperature 
 

600  C 

5 bar 1 bar 10 bar 



800  C 

1 bar 10 bar 5 bar 

Effect on Pressure at constant temperature 

 



1000  C 

1 bar 5 bar 10 bar 1 bar 

Effect on Pressure at constant temperature 

 



Gas-Filled Pockets Formed at High Pressures 

Pine Char Formed at 15 bars and 1000 C 



Gas Composition during Pyrolysis 

 

Species 

Gas Composition (mole%) at  5 bars 

600 oC 800 oC 1000 oC 

CO 45.2 41.2 61.0 

CO2 16.7 16.9 12.1 

H2 8.9 24.5 21.9 

CH4 21.1 16.6 4.75 

C2H6 1.42 

C2H4 5.70 0.52 0.10 

C2H2 0.09 0.22 0.15 

C3H8 0.03 

C3H6 0.66 

C4H10 

C4H8 

C4H6 0.14 



Gas Composition during Pyrolysis 

Species Gas Composition (mole%) at  15 bars 

600 oC 800 oC 1000 oC 

CO 39.4 37.5 65.3 

CO2 17.7 17.7 5.9 

H2 17.4 29.0 26.0 

CH4 21.7 15.6 2.84 

C2H6 0.1 

C2H4 3.40 

C2H2 0.20 0.16 

C3H8 

C3H6 

C4H10 

C4H8 

C4H6 0.03 



BET Surface Area of Switchgrass Chars generated in PEFR 
Reference: Switchgrass feed BET area 0.8 m2/gm 

600 oC 

m2/gm 

800 oC 

m2/gm 

1000 oC 

m2/gm 

 
1 bar 1.8 2.9 75 

  5 bars 3.0 187 321 

10 bars 3.3 175 278  

15 bars 5.2 108 198 
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Mass Transfer Limitations in Thermobalances 

Mass transfer: 
- from bulk gas to surface of sample holder 
- from surface of sample to bottom of sample 
-from surface of particle to center of particle 
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Impact of Heating Rate 

A PEFR 600C 5 bar 

B PEFR 1000C 5 bar 
C PEFR 600C 15 bar 
D PTGA 900C 5 bar 

Chars prepared in PEFR (high heating 
rate) and PTGA (low heating rate) gasi
fied in PTGA 
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Testing for Mass Transfer Limitations 
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Loblolly Pine Gasification in PEFR 

 
 
 
 

Gasification Conditions:   10% CO2, 2% H2O, 0.3% H2, 1.72% CO, 86% N2 

                           900 oC   particle size 180-250 µm  
 

Residence Time Percent carbon remaining in the  

char Residue 
Pressure 5 bars Pressure 15 bars 

3 sec 50.4 % 52.9 % 

6 sec 40.0 % 

10 sec 24.5 % 32.0 % 
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Cornstover Gasification in PEFR 

 
 
 
 

Gasification Conditions:   10% CO2, 2% H2O, 0.3% H2, 1.72% CO, 86% N2 

                             900 oC   particle size 106-180 µm  
 

Residence Time Percent carbon remaining in the  

char Residue 
Pressure 5 bars Pressure 15 bars 

3 sec 21.5% 29.7% 

6 sec 20.3% 24.0% 

10 sec 13.2% 18.6% 
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Conclusions 

 
Pyrolysis pressure and temperature greatly affect char yield and char 
morphology. 
 
High heating rates in PEFR produce char that mimick commercial gasifier 
operation. 
 
PEFR can provide useful kinetic information on biomass conversion, but it will 
have limitations due to the need to run integral operation. 
 
PTGA operation is similar to a semi-batch reactor, which makes it possible to 
build the kinetic model. Caution is needed to ensure that results are not masked 
by the transport effects. 
 
Both PTGA and PEFR have limitations if used alone. However, when combined 
together, the two are complementary and would provide a basis for building a 
reliable mathematical model.  



Future Work 

• Characterization of Chars – ICP EA, Nitrogen physisorption, 
SEM, NMR (?), FTIR , C,H,N,O Analysis – carbon balance 
 

• Effect of pyrolysis conditions on the formation of tars and 
light hydrocarbons- tar characterization 
 

• Kinetics of char gasification (L-H models) 
 

• Catalytic role of recycled ash and inorganic species in char 
gasification 
 

• Mathematical modeling (transport effects) 
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