Effect of Pressure and Heating Rates on Biomass Pyrolysis and Gasification

Georg

Pradeep K. Agrawal School of Chemical and Biomolecular Engineering Georgia Institute of Technology

June 15, 2012

Auburn University

Workshop on Lignocellulosic Biofuels Using Thermochemical Conversion

Strategies for production of fuels from lignocellulosic biomass

Cellulosic	Gasification	SynGas	Fischer-Tropsch	Alkanes, Methanol
Biomass		(CO + H ₂)	Methanol, Water-Gas Shift	Hydrogen
	Hydrobysis			-4
		Aqueous	Fermentation, Dehydration	Ethanol Aromatic Hydrocarbons
		Suyai	Aqueous-Phase Processing	Liquid Alkanes or Hydrogen
Eller Color			Lignin Upgrading	
		Lignin		Liquid Fuels
Photo credit: U.S. Department of Energy,	Dunchusis on Lia		77 . 1°4 . TT 1°	
Energy Efficiency & Renewable Energy Network (EREN)	r yroiysis or Liq.	Bio-oils	Leolite Upgrading	Liquid Fuels
			Hydrodeoxygenation	

Characteristics of Gasification

Huber et al., *Catal. Today* **2006**, *111*, 119.

Georgia

Pyrolysis and Char gasification proceed sequentially Pyrolysis pressure and temperature affect char reactivity Char reactivity depends on temperature, gas composition, porosity, ash contents, and transport effects Langmuir-Hinshelwood kinetic models suggested in the literature for biomass/char gasification High pressure gasification has particular significance

Sutton et al., Fuel Processing Technology, 73 (2001) 155-73 Di Blasi,, Progress in Energy & Combustion Science 35 (2009) 121-140 Cetin, Gupta, and Moghtaderi, Fuel, 84 (2005) 1328-1334

• Carbon gasification rate slow step in conversion of biomass to syngas $(CO + H_2)$

Geor

- $C + H_2O \rightarrow CO + H_2$
- $C + CO_2 \rightarrow 2 CO$
- Rate catalyzed by alkali metals
- Langmuir-Hinshelwood type kinetics
- CO and H₂ inhibit gasification
- Devolatilization impacts amount of carbon to be gasified and gas composition, including tar and hydrocarbon formation

Alkali Catalyzed Carbon Gasification

Need to Obtain Rate Data Including Impacts of All Relevant Species

Georgia

Biomass Gasification Background

Biomass gasification is a combination of two series processes

 pyrolysis (devolatilization) and char gasification. Char
 gasification activity is affected by the pyrolysis conditions
 (heating rate, temperature, and pressure), ash content and
 composition, and gasification conditions.

Geor

• The challenge is to develop experimental protocols that would allow collecting experimental data at conditions that most likely mimic the heating rate, temperature, pressure, residence time, and transport effects likely to be encountered in a commercial gasifier.

Goals/Objectives

• Quantitative understanding of the gasification and pyrolysis along with an improved understanding of the catalytic effect of inorganics present in biomass

Geor

- Role of particle morphology in mass transport effects as well as the char reactivity
- Identifying process conditions where synergistic effects of biomass-coal blending are observed. This will include effect of particle size, residence time and proximity of the two feed types
- Building mathematical models based on science and engineering principles that would predict the biomass gasification rate at a given pressure, temperature and feed composition.
- Quantify the effect of pressure and temperature on the formation of tars and light hydrocarbons.

Methods

- Experiments in two complementary reactors:
- Pressurized entrained-flow reactor (PEFR) at Georgia Tech
- Pressurized thermogravimetric apparatus (PTGA) at NREL
 - Differences in heating rate, reaction time
 - Mass/heat transfer limitations
- Three biomass types:
 - Loblolly pine
 - Switch grass
 - Corn stover

iecn

REACTOR	PEFR	PTGA	
Pressure	Up to 80 bar	Up to 100 bar	
Temperature	Up to 1500 C	Up to 1200 C	
Mode	Co-current flow	Semi-Batch	
Sample size	~1 g/min	10-100 mg	
Heating Rate	~10,000 C/s	~10 C/min	
Residence time	Up to 10 s	Up to hours	
Kinetic Control Limit	>1000°C	~800°C	
Gas analysis	FTIR, GC	MS, FTIR	

Elemental Composition of Biomass Feed

Element	Loblolly	Switchgrass	Cornstover
	Pine		
С	52.4%	48.3%	43.7%
Η	6.3%	6.1%	5.9%
Ν	0.07%	0.36%	0.59%
0	40.9%	44.7%	45.3%
Ash	0.3%	2.2%	6.1%
Volatile Matter	79.1%	77.6%	74.4%
Fixed Carbon	12.8%	12.4%	12.6%

Elemental Analysis of Feed Biomass (ICP)

Element	Loblolly Pine	Switchgrass	Cornstover
Ca	490	1790	1900
Fe	38	20	437
K	358	4980	8675
Mg	203	1540	1325

• Investigate high temperature pyrolysis of biomass - effect of pressure and temperature on char morphology and reactivity towards gasification

Geor

- Gasification kinetics of chars generated from pyrolysis (individual chars, blend pyrolysis chars, and blending of chars generated individually)
- Catalytic effect of inorganics (ash) on char gasification
- Transport effects and mathematical models

Pressurized Entrained Flow Reactor

Pressurized

ntrained

low

Reactor

Pressurized Thermobalance (PTGA)

Effect of Pressure and Heating Rate on Loss of Mass in PTGA Pyrolysis

Georgia

Tech

Effect of Pressure on Residual Char

FTIR vs. Mass Spectrometer in PTGA

Effect of Pressure on Gas Species Evolution

Effect of Pressure on Gas Species Evolution

Major Gas Species (5 bar)

Major Gas Species (30 bar)

Light Hydrocarbons (5 bar)

Light Hydrocarbons (30 bar)

Effect of Pressure on Minor Gaseous Products

Benzene, Oxygenated Species at 30 bar

Effect of Temperature at Constant pressure

Georgia Tech

Char generated in LEFR

Effect on Pressure at constant temperature

600 C

Effect on Pressure at constant temperature

800 C

Effect on Pressure at constant temperature

Georgia Tech

1000 C

Gas-Filled Pockets Formed at High Pressures Pine Char Formed at 15 bars and 1000 C

Gas Composition during Pyrolysis

	Gas Composition (mole%) at 5 bars		
Species	600 °C	800 °C	1000 °C
CO	45.2	41.2	61.0
CO ₂	16.7	16.9	12.1
H_2	8.9	24.5	21.9
CH ₄	21.1	16.6	4.75
C ₂ H ₆	1.42		
C_2H_4	5.70	0.52	0.10
C ₂ H ₂	0.09	0.22	0.15
C ₃ H ₈	0.03		
C ₃ H ₆	0.66		
C ₄ H ₁₀			
C ₄ H ₈			
C ₄ H ₆	0.14		

Gas Composition during Pyrolysis

Species	Gas Composition (mole%) at 15 bars		
	600 °C	800 °C	1000 °C
CO	39.4	37.5	65.3
CO ₂	17.7	17.7	5.9
H_2	17.4	29.0	26.0
CH ₄	21.7	15.6	2.84
C ₂ H ₆	0.1		
C_2H_4	3.40		
C ₂ H ₂	0.20	0.16	
C ₃ H ₈			
C ₃ H ₆			
C ₄ H ₁₀			
C ₄ H ₈			
C ₄ H ₆	0.03		

BET Surface Area of Switchgrass Chars generated in PEFR Reference: Switchgrass feed BET area 0.8 m²/gm

	600 °C	800 °C	1000 °C
	m²/gm	m²/gm	m²/gm
1 bar	1.8	2.9	75
5 bars	3.0	187	321
10 bars	3.3	175	278
15 bars	5.2	108	198

Mass Transfer Limitations in Thermobalances

Mass transfer:

- from bulk gas to surface of sample holder
- from surface of sample to bottom of sample
- -from surface of particle to center of particle

Impact of Heating Rate

Chars prepared in PEFR (high heating rate) and PTGA (low heating rate) gasi fied in PTGA

Α	PEFR	600C	5 bar
В	PEFR	1000C	5 bar
С	PEFR	600C	15 bar
D	PTGA	900C	5 bar

Testing for Mass Transfer Limitations

Residence Time	Percent carbon remaining in the		
	char Residue		
	Pressure 5 bars	Pressure 15 bars	
3 sec	50.4 %	52.9 %	
6 sec	40.0 %		
10 sec	24.5 %	32.0 %	

Gasification Conditions: 10% CO₂, 2% H₂O, 0.3% H₂, 1.72% CO, 86% N₂ 900 °C particle size 180-250 μm

Residence Time	Percent carbon remaining in the		
	char Residue		
	Pressure 5 bars	Pressure 15 bars	
3 sec	21.5%	29.7%	
6 sec	20.3%	24.0%	
10 sec	13.2%	18.6%	

Gasification Conditions: 10% CO₂, 2% H₂O, 0.3% H₂, 1.72% CO, 86% N₂ 900 °C particle size 106-180 μm

Pyrolysis pressure and temperature greatly affect char yield and char morphology.

High heating rates in PEFR produce char that mimick commercial gasifier operation.

PEFR can provide useful kinetic information on biomass conversion, but it will have limitations due to the need to run integral operation.

PTGA operation is similar to a semi-batch reactor, which makes it possible to build the kinetic model. Caution is needed to ensure that results are not masked by the transport effects.

Both PTGA and PEFR have limitations if used alone. However, when combined together, the two are complementary and would provide a basis for building a reliable mathematical model.

Future Work

- Characterization of Chars ICP EA, Nitrogen physisorption, SEM, NMR (?), FTIR, C,H,N,O Analysis – carbon balance
- Effect of pyrolysis conditions on the formation of tars and light hydrocarbons- tar characterization
- Kinetics of char gasification (L-H models)
- Catalytic role of recycled ash and inorganic species in char gasification
- Mathematical modeling (transport effects)

- Kristiina Iisa (NREL)
- Carsten Sievers
- Scott Sinquefield
- Steve Lien
- Pranjal Kalita
- Gautami Newalkar
- Paige Case
- Taylor Donnell
- Kathryn Black
- U.S. Department of Energy (Golden, Co; Morgantown, WVa)

Georaia

